《动手学深度学习》PyTorch版学习记录(一)

2020/2/14 17:50 下午 posted in  技术 随记 comments

近期参加了伯禹教育、Datawhale、和鲸科技组织的“《动手学深度学习》代码讲解PyTorch版”课程学习,本文为第一次学习记录。涉及知识点:线性回归、softmax回归和过拟合与欠拟合。

线性回归

线性回归输出是一个连续值,因此适用于回归问题。回归问题在实际中很常见,如预测房屋价格、气温、销售额等连续值的问题。与回归问题不同,分类问题中模型的最终输出是一个离散值。我们所说的图像分类、垃圾邮件识别、疾病检测等输出为离散值的问题都属于分类问题的范畴。softmax回归则适用于分类问题。

由于线性回归和softmax回归都是单层神经网络,它们涉及的概念和技术同样适用于大多数的深度学习模型。我们首先以线性回归为例,介绍大多数深度学习模型的基本要素和表示方法。

线性回归的基本要素

我们以一个简单的房屋价格预测作为例子来解释线性回归的基本要素。这个应用的目标是预测一栋房子的售出价格(元)。我们知道这个价格取决于很多因素,如房屋状况、地段、市场行情等。为了简单起见,这里我们假设价格只取决于房屋状况的两个因素,即面积(平方米)和房龄(年)。接下来我们希望探索价格与这两个因素的具体关系。

模型

设房屋的面积为\(x_1\),房龄为\(x_2\),售出价格为\(y\)。我们需要建立基于输入\(x_1\)和\(x_2\)来计算输出\(y\)的表达式,也就是模型(model)。顾名思义,线性回归假设输出与各个输入之间是线性关系:

\[\hat{y} = x_1 w_1 + x_2 w_2 + b,\]

其中\(w_1\)和\(w_2\)是权重(weight),\(b\)是偏差(bias),且均为标量。它们是线性回归模型的参数(parameter)。模型输出\(\hat{y}\)是线性回归对真实价格\(y\)的预测或估计。我们通常允许它们之间有一定误差。

模型训练

接下来我们需要通过数据来寻找特定的模型参数值,使模型在数据上的误差尽可能小。这个过程叫作模型训练(model training)。下面我们介绍模型训练所涉及的3个要素。

训练数据

我们通常收集一系列的真实数据,例如多栋房屋的真实售出价格和它们对应的面积和房龄。我们希望在这个数据上面寻找模型参数来使模型的预测价格与真实价格的误差最小。在机器学习术语里,该数据集被称为训练数据集(training data set)或训练集(training set),一栋房屋被称为一个样本(sample),其真实售出价格叫作标签(label),用来预测标签的两个因素叫作特征(feature)。特征用来表征样本的特点。

假设我们采集的样本数为\(n\),索引为\(i\)的样本的特征为\(x_1^{(i)}\)和\(x_2^{(i)}\),标签为\(y^{(i)}\)。对于索引为\(i\)的房屋,线性回归模型的房屋价格预测表达式为

\[\hat{y}^{(i)} = x_1^{(i)} w_1 + x_2^{(i)} w_2 + b.\]

损失函数

在模型训练中,我们需要衡量价格预测值与真实值之间的误差。通常我们会选取一个非负数作为误差,且数值越小表示误差越小。一个常用的选择是平方函数。它在评估索引为\(i\)的样本误差的表达式为

\[\ell^{(i)}(w_1, w_2, b) = \frac{1}{2} \left(\hat{y}^{(i)} - y^{(i)}\right)^2,\]

其中常数\(1/2\)使对平方项求导后的常数系数为1,这样在形式上稍微简单一些。显然,误差越小表示预测价格与真实价格越相近,且当二者相等时误差为0。给定训练数据集,这个误差只与模型参数相关,因此我们将它记为以模型参数为参数的函数。在机器学习里,将衡量误差的函数称为损失函数(loss function)。这里使用的平方误差函数也称为平方损失(square loss)。

通常,我们用训练数据集中所有样本误差的平均来衡量模型预测的质量,即

\[\ell(w_1, w_2, b) =\frac{1}{n} \sum_{i=1}^n \ell^{(i)}(w_1, w_2, b) =\frac{1}{n} \sum_{i=1}^n \frac{1}{2}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right)^2.\]

在模型训练中,我们希望找出一组模型参数,记为\(w_1^*, w_2^*, b^*\),来使训练样本平均损失最小:

\[w_1^*, w_2^*, b^* = \operatorname*{argmin}_{w_1, w_2, b}\ \ell(w_1, w_2, b).\]

优化算法

当模型和损失函数形式较为简单时,上面的误差最小化问题的解可以直接用公式表达出来。这类解叫作解析解(analytical solution)。本节使用的线性回归和平方误差刚好属于这个范畴。然而,大多数深度学习模型并没有解析解,只能通过优化算法有限次迭代模型参数来尽可能降低损失函数的值。这类解叫作数值解(numerical solution)。

在求数值解的优化算法中,小批量随机梯度下降(mini-batch stochastic gradient descent)在深度学习中被广泛使用。它的算法很简单:先选取一组模型参数的初始值,如随机选取;接下来对参数进行多次迭代,使每次迭代都可能降低损失函数的值。在每次迭代中,先随机均匀采样一个由固定数目训练数据样本所组成的小批量(mini-batch)\(\mathcal{B}\),然后求小批量中数据样本的平均损失有关模型参数的导数(梯度),最后用此结果与预先设定的一个正数的乘积作为模型参数在本次迭代的减小量。

在训练本节讨论的线性回归模型的过程中,模型的每个参数将作如下迭代:

\[
\begin{aligned}
w_1 &\leftarrow w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \frac{ \partial \ell^{(i)}(w_1, w_2, b) }{\partial w_1} = w_1 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_1^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\
w_2 &\leftarrow w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \frac{ \partial \ell^{(i)}(w_1, w_2, b) }{\partial w_2} = w_2 - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}x_2^{(i)} \left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right),\\
b &\leftarrow b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \frac{ \partial \ell^{(i)}(w_1, w_2, b) }{\partial b} = b - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}}\left(x_1^{(i)} w_1 + x_2^{(i)} w_2 + b - y^{(i)}\right).
\end{aligned}
\]

在上式中,\(|\mathcal{B}|\)代表每个小批量中的样本个数(批量大小,batch size),\(\eta\)称作学习率(learning rate)并取正数。需要强调的是,这里的批量大小和学习率的值是人为设定的,并不是通过模型训练学出的,因此叫作超参数(hyperparameter)。我们通常所说的“调参”指的正是调节超参数,例如通过反复试错来找到超参数合适的值。在少数情况下,超参数也可以通过模型训练学出。本书对此类情况不做讨论。

模型预测

模型训练完成后,我们将模型参数\(w_1, w_2, b\)在优化算法停止时的值分别记作\(\hat{w}_1, \hat{w}_2, \hat{b}\)。注意,这里我们得到的并不一定是最小化损失函数的最优解\(w_1^*, w_2^*, b^*\),而是对最优解的一个近似。然后,我们就可以使用学出的线性回归模型\(x_1 \hat{w}_1 + x_2 \hat{w}_2 + \hat{b}\)来估算训练数据集以外任意一栋面积(平方米)为\(x_1\)、房龄(年)为\(x_2\)的房屋的价格了。这里的估算也叫作模型预测、模型推断或模型测试。

线性回归的表示方法

我们已经阐述了线性回归的模型表达式、训练和预测。下面我们解释线性回归与神经网络的联系,以及线性回归的矢量计算表达式。

神经网络图

在深度学习中,我们可以使用神经网络图直观地表现模型结构。为了更清晰地展示线性回归作为神经网络的结构,图3.1使用神经网络图表示本节中介绍的线性回归模型。神经网络图隐去了模型参数权重和偏差。

线性回归是一个单层神经网络

在图3.1所示的神经网络中,输入分别为\(x_1\)和\(x_2\),因此输入层的输入个数为2。输入个数也叫特征数或特征向量维度。图3.1中网络的输出为\(o\),输出层的输出个数为1。需要注意的是,我们直接将图3.1中神经网络的输出\(o\)作为线性回归的输出,即\(\hat{y} = o\)。由于输入层并不涉及计算,按照惯例,图3.1所示的神经网络的层数为1。所以,线性回归是一个单层神经网络。输出层中负责计算\(o\)的单元又叫神经元。在线性回归中,\(o\)的计算依赖于\(x_1\)和\(x_2\)。也就是说,输出层中的神经元和输入层中各个输入完全连接。因此,这里的输出层又叫全连接层(fully-connected layer)或稠密层(dense layer)。

矢量计算表达式

在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。

下面先定义两个1000维的向量。

from mxnet import nd
from time import time

a = nd.ones(shape=1000)
b = nd.ones(shape=1000)

向量相加的一种方法是,将这两个向量按元素逐一做标量加法。

start = time()
c = nd.zeros(shape=1000)
for i in range(1000):
    c[i] = a[i] + b[i]
time() - start
0.147660493850708

向量相加的另一种方法是,将这两个向量直接做矢量加法。

start = time()
d = a + b
time() - start
0.0002694129943847656

结果很明显,后者比前者更省时。因此,我们应该尽可能采用矢量计算,以提升计算效率。

让我们再次回到本节的房价预测问题。如果我们对训练数据集里的3个房屋样本(索引分别为1、2和3)逐一预测价格,将得到

\[
\begin{aligned}
\hat{y}^{(1)} &= x_1^{(1)} w_1 + x_2^{(1)} w_2 + b,\\
\hat{y}^{(2)} &= x_1^{(2)} w_1 + x_2^{(2)} w_2 + b,\\
\hat{y}^{(3)} &= x_1^{(3)} w_1 + x_2^{(3)} w_2 + b.
\end{aligned}
\]

现在,我们将上面3个等式转化成矢量计算。设

\[
\boldsymbol{\hat{y}} =
\begin{bmatrix}
\hat{y}^{(1)} \\
\hat{y}^{(2)} \\
\hat{y}^{(3)}
\end{bmatrix},\quad
\boldsymbol{X} =
\begin{bmatrix}
x_1^{(1)} & x_2^{(1)} \\
x_1^{(2)} & x_2^{(2)} \\
x_1^{(3)} & x_2^{(3)}
\end{bmatrix},\quad
\boldsymbol{w} =
\begin{bmatrix}
w_1 \\
w_2
\end{bmatrix}.
\]

对3个房屋样本预测价格的矢量计算表达式为\(\boldsymbol{\hat{y}} = \boldsymbol{X} \boldsymbol{w} + b,\) 其中的加法运算使用了广播机制(参见“数据操作”一节)。例如:

a = nd.ones(shape=3)
b = 10
a + b
[11. 11. 11.]
<NDArray 3 @cpu(0)>

广义上讲,当数据样本数为\(n\),特征数为\(d\)时,线性回归的矢量计算表达式为

\[\boldsymbol{\hat{y}} = \boldsymbol{X} \boldsymbol{w} + b,\]

其中模型输出\(\boldsymbol{\hat{y}} \in \mathbb{R}^{n \times 1}\), 批量数据样本特征\(\boldsymbol{X} \in \mathbb{R}^{n \times d}\),权重\(\boldsymbol{w} \in \mathbb{R}^{d \times 1}\), 偏差\(b \in \mathbb{R}\)。相应地,批量数据样本标签\(\boldsymbol{y} \in \mathbb{R}^{n \times 1}\)。设模型参数\(\boldsymbol{\theta} = [w_1, w_2, b]^\top\),我们可以重写损失函数为

\[\ell(\boldsymbol{\theta})=\frac{1}{2n}(\boldsymbol{\hat{y}}-\boldsymbol{y})^\top(\boldsymbol{\hat{y}}-\boldsymbol{y}).\]

小批量随机梯度下降的迭代步骤将相应地改写为

\[\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\eta}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla_{\boldsymbol{\theta}} \ell^{(i)}(\boldsymbol{\theta}),\]

其中梯度是损失有关3个为标量的模型参数的偏导数组成的向量:

Pasted Screenshot 2020-02-14 18-05-56

小结

  • 和大多数深度学习模型一样,对于线性回归这样一种单层神经网络,它的基本要素包括模型、训练数据、损失函数和优化算法。
  • 既可以用神经网络图表示线性回归,又可以用矢量计算表示该模型。
  • 应该尽可能采用矢量计算,以提升计算效率。

练习

  • 使用其他包(如NumPy)或其他编程语言(如MATLAB),比较相加两个向量的两种方法的运行时间。

线性回归的从零开始实现

在了解了线性回归的背景知识之后,现在我们可以动手实现它了。尽管强大的深度学习框架可以减少大量重复性工作,但若过于依赖它提供的便利,会导致我们很难深入理解深度学习是如何工作的。因此,本节将介绍如何只利用NDArrayautograd来实现一个线性回归的训练。

首先,导入本节中实验所需的包或模块,其中的matplotlib包可用于作图,且设置成嵌入显示。

%matplotlib inline
from IPython import display
from matplotlib import pyplot as plt
from mxnet import autograd, nd
import random

生成数据集

我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别。设训练数据集样本数为1000,输入个数(特征数)为2。给定随机生成的批量样本特征\(\boldsymbol{X} \in \mathbb{R}^{1000 \times 2}\),我们使用线性回归模型真实权重\(\boldsymbol{w} = [2, -3.4]^\top\)和偏差\(b = 4.2\),以及一个随机噪声项\(\epsilon\)来生成标签

\[\boldsymbol{y} = \boldsymbol{X}\boldsymbol{w} + b + \epsilon,\]

其中噪声项\(\epsilon\)服从均值为0、标准差为0.01的正态分布。噪声代表了数据集中无意义的干扰。下面,让我们生成数据集。

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = nd.random.normal(scale=1, shape=(num_examples, num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)

注意,features的每一行是一个长度为2的向量,而labels的每一行是一个长度为1的向量(标量)。

features[0], labels[0]
(
 [2.2122064 0.7740038]
 <NDArray 2 @cpu(0)>, 
 [6.000587]
 <NDArray 1 @cpu(0)>)

通过生成第二个特征features[:, 1]和标签 labels 的散点图,可以更直观地观察两者间的线性关系。

def use_svg_display():
    # 用矢量图显示
    display.set_matplotlib_formats('svg')

def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize

set_figsize()
plt.scatter(features[:, 1].asnumpy(), labels.asnumpy(), 1);  # 加分号只显示图

output_7_0

我们将上面的plt作图函数以及use_svg_display函数和set_figsize函数定义在d2lzh包里。以后在作图时,我们将直接调用d2lzh.plt。由于pltd2lzh包中是一个全局变量,我们在作图前只需要调用d2lzh.set_figsize()即可打印矢量图并设置图的尺寸。

读取数据

在训练模型的时候,我们需要遍历数据集并不断读取小批量数据样本。这里我们定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

# 本函数已保存在d2lzh包中方便以后使用
def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    random.shuffle(indices)  # 样本的读取顺序是随机的
    for i in range(0, num_examples, batch_size):
        j = nd.array(indices[i: min(i + batch_size, num_examples)])
        yield features.take(j), labels.take(j)  # take函数根据索引返回对应元素

让我们读取第一个小批量数据样本并打印。每个批量的特征形状为(10, 2),分别对应批量大小和输入个数;标签形状为批量大小。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, y)
    break
[[ 1.8523372  -1.1978964 ]
 [-1.464119    0.50711036]
 [-0.02477526 -0.3930928 ]
 [ 0.5264945  -0.4439822 ]
 [-0.65918195 -0.7501681 ]
 [ 2.0027666   0.04691195]
 [ 0.23753463 -0.16727363]
 [-1.2387311   1.6483529 ]
 [ 1.3671521   0.4300703 ]
 [-0.13764037  3.4004579 ]]
<NDArray 10x2 @cpu(0)> 
[11.983968   -0.46103162  5.501128    6.778484    5.426218    8.048336
  5.2323737  -3.8805866   5.4759536  -7.6405106 ]
<NDArray 10 @cpu(0)>

初始化模型参数

我们将权重初始化成均值为0、标准差为0.01的正态随机数,偏差则初始化成0。

w = nd.random.normal(scale=0.01, shape=(num_inputs, 1))
b = nd.zeros(shape=(1,))

之后的模型训练中,需要对这些参数求梯度来迭代参数的值,因此我们需要创建它们的梯度。

w.attach_grad()
b.attach_grad()

定义模型

下面是线性回归的矢量计算表达式的实现。我们使用dot函数做矩阵乘法。

def linreg(X, w, b):  # 本函数已保存在d2lzh包中方便以后使用
    return nd.dot(X, w) + b

定义损失函数

我们使用上一节描述的平方损失来定义线性回归的损失函数。在实现中,我们需要把真实值y变形成预测值y_hat的形状。以下函数返回的结果也将和y_hat的形状相同。

def squared_loss(y_hat, y):  # 本函数已保存在d2lzh包中方便以后使用
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

定义优化算法

以下的sgd函数实现了上一节中介绍的小批量随机梯度下降算法。它通过不断迭代模型参数来优化损失函数。这里自动求梯度模块计算得来的梯度是一个批量样本的梯度和。我们将它除以批量大小来得到平均值。

def sgd(params, lr, batch_size):  # 本函数已保存在d2lzh包中方便以后使用
    for param in params:
        param[:] = param - lr * param.grad / batch_size

训练模型

在训练中,我们将多次迭代模型参数。在每次迭代中,我们根据当前读取的小批量数据样本(特征X和标签y),通过调用反向函数backward计算小批量随机梯度,并调用优化算法sgd迭代模型参数。由于我们之前设批量大小batch_size为10,每个小批量的损失l的形状为(10, 1)。回忆一下“自动求梯度”一节。由于变量l并不是一个标量,运行l.backward()将对l中元素求和得到新的变量,再求该变量有关模型参数的梯度。

在一个迭代周期(epoch)中,我们将完整遍历一遍data_iter函数,并对训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设3和0.03。在实践中,大多超参数都需要通过反复试错来不断调节。虽然迭代周期数设得越大模型可能越有效,但是训练时间可能过长。而有关学习率对模型的影响,我们会在后面“优化算法”一章中详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):  # 训练模型一共需要num_epochs个迭代周期
    # 在每一个迭代周期中,会使用训练数据集中所有样本一次(假设样本数能够被批量大小整除)。X
    # 和y分别是小批量样本的特征和标签
    for X, y in data_iter(batch_size, features, labels):
        with autograd.record():
            l = loss(net(X, w, b), y)  # l是有关小批量X和y的损失
        l.backward()  # 小批量的损失对模型参数求梯度
        sgd([w, b], lr, batch_size)  # 使用小批量随机梯度下降迭代模型参数
    train_l = loss(net(features, w, b), labels)
    print('epoch %d, loss %f' % (epoch + 1, train_l.mean().asnumpy()))
epoch 1, loss 0.040909
epoch 2, loss 0.000152
epoch 3, loss 0.000050

训练完成后,我们可以比较学到的参数和用来生成训练集的真实参数。它们应该很接近。

true_w, w
([2, -3.4], 
 [[ 1.9996984]
  [-3.3998005]]
 <NDArray 2x1 @cpu(0)>)
true_b, b
(4.2, 
 [4.20011]
 <NDArray 1 @cpu(0)>)

小结

  • 可以看出,仅使用NDArrayautograd模块就可以很容易地实现一个模型。接下来,本书会在此基础上描述更多深度学习模型,并介绍怎样使用更简洁的代码(见下一节)来实现它们。

练习

  • 为什么squared_loss函数中需要使用reshape函数?
  • 尝试使用不同的学习率,观察损失函数值的下降快慢。
  • 如果样本个数不能被批量大小整除,data_iter函数的行为会有什么变化?

softmax回归

前几节介绍的线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。

分类问题

让我们考虑一个简单的图像分类问题,其输入图像的高和宽均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。我们将图像中的4像素分别记为\(x_1, x_2, x_3, x_4\)。假设训练数据集中图像的真实标签为狗、猫或鸡(假设可以用4像素表示出这3种动物),这些标签分别对应离散值\(y_1, y_2, y_3\)。

我们通常使用离散的数值来表示类别,例如\(y_1=1, y_2=2, y_3=3\)。如此,一张图像的标签为1、2和3这3个数值中的一个。虽然我们仍然可以使用回归模型来进行建模,并将预测值就近定点化到1、2和3这3个离散值之一,但这种连续值到离散值的转化通常会影响到分类质量。因此我们一般使用更加适合离散值输出的模型来解决分类问题。

softmax回归模型

softmax回归跟线性回归一样将输入特征与权重做线性叠加。与线性回归的一个主要不同在于,softmax回归的输出值个数等于标签里的类别数。因为一共有4种特征和3种输出动物类别,所以权重包含12个标量(带下标的\(w\))、偏差包含3个标量(带下标的\(b\)),且对每个输入计算\(o_1, o_2, o_3\)这3个输出:

\[
\begin{aligned}
o_1 &= x_1 w_{11} + x_2 w_{21} + x_3 w_{31} + x_4 w_{41} + b_1,\\
o_2 &= x_1 w_{12} + x_2 w_{22} + x_3 w_{32} + x_4 w_{42} + b_2,\\
o_3 &= x_1 w_{13} + x_2 w_{23} + x_3 w_{33} + x_4 w_{43} + b_3.
\end{aligned}
\]

图3.2用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出\(o_1, o_2, o_3\)的计算都要依赖于所有的输入\(x_1, x_2, x_3, x_4\),softmax回归的输出层也是一个全连接层。

softmax回归是一个单层神经网络

softmax运算

既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值\(o_i\)当作预测类别是\(i\)的置信度,并将值最大的输出所对应的类作为预测输出,即输出\(\operatorname*{argmax}_i o_i\)。例如,如果\(o_1,o_2,o_3\)分别为\(0.1,10,0.1\),由于\(o_2\)最大,那么预测类别为2,其代表猫。

然而,直接使用输出层的输出有两个问题。一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果\(o_1=o_3=10^3\),那么输出值10却又表示图像类别为猫的概率很低。另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。

softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:

\[\hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3),\]

其中

\[
\hat{y}_1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad
\hat{y}_2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad
\hat{y}_3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}.
\]

容易看出\(\hat{y}_1 + \hat{y}_2 + \hat{y}_3 = 1\)且\(0 \leq \hat{y}_1, \hat{y}_2, \hat{y}_3 \leq 1\),因此\(\hat{y}_1, \hat{y}_2, \hat{y}_3\)是一个合法的概率分布。这时候,如果\(\hat{y}_2=0.8\),不管\(\hat{y}_1\)和\(\hat{y}_3\)的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到

\[\operatorname*{argmax}_i o_i = \operatorname*{argmax}_i \hat y_i,\]

因此softmax运算不改变预测类别输出。

单样本分类的矢量计算表达式

为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为

\[
\boldsymbol{W} =
\begin{bmatrix}
w_{11} & w_{12} & w_{13} \\
w_{21} & w_{22} & w_{23} \\
w_{31} & w_{32} & w_{33} \\
w_{41} & w_{42} & w_{43}
\end{bmatrix},\quad
\boldsymbol{b} =
\begin{bmatrix}
b_1 & b_2 & b_3
\end{bmatrix},
\]

设高和宽分别为2个像素的图像样本\(i\)的特征为

\[\boldsymbol{x}^{(i)} = \begin{bmatrix}x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)}\end{bmatrix},\]

输出层的输出为

\[\boldsymbol{o}^{(i)} = \begin{bmatrix}o_1^{(i)} & o_2^{(i)} & o_3^{(i)}\end{bmatrix},\]

预测为狗、猫或鸡的概率分布为

\[\boldsymbol{\hat{y}}^{(i)} = \begin{bmatrix}\hat{y}_1^{(i)} & \hat{y}_2^{(i)} & \hat{y}_3^{(i)}\end{bmatrix}.\]

softmax回归对样本\(i\)分类的矢量计算表达式为

\[
\begin{aligned}
\boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\
\boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}).
\end{aligned}
\]

小批量样本分类的矢量计算表达式

为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为\(n\),输入个数(特征数)为\(d\),输出个数(类别数)为\(q\)。设批量特征为\(\boldsymbol{X} \in \mathbb{R}^{n \times d}\)。假设softmax回归的权重和偏差参数分别为\(\boldsymbol{W} \in \mathbb{R}^{d \times q}\)和\(\boldsymbol{b} \in \mathbb{R}^{1 \times q}\)。softmax回归的矢量计算表达式为

\[
\begin{aligned}
\boldsymbol{O} &= \boldsymbol{X} \boldsymbol{W} + \boldsymbol{b},\\
\boldsymbol{\hat{Y}} &= \text{softmax}(\boldsymbol{O}),
\end{aligned}
\]

其中的加法运算使用了广播机制,\(\boldsymbol{O}, \boldsymbol{\hat{Y}} \in \mathbb{R}^{n \times q}\)且这两个矩阵的第\(i\)行分别为样本\(i\)的输出\(\boldsymbol{o}^{(i)}\)和概率分布\(\boldsymbol{\hat{y}}^{(i)}\)。

交叉熵损失函数

前面提到,使用softmax运算后可以更方便地与离散标签计算误差。我们已经知道,softmax运算将输出变换成一个合法的类别预测分布。实际上,真实标签也可以用类别分布表达:对于样本\(i\),我们构造向量\(\boldsymbol{y}^{(i)}\in \mathbb{R}^{q}\) ,使其第\(y^{(i)}\)(样本\(i\)类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布\(\boldsymbol{\hat y}^{(i)}\)尽可能接近真实的标签概率分布\(\boldsymbol{y}^{(i)}\)。

我们可以像线性回归那样使用平方损失函数\(\|\boldsymbol{\hat y}^{(i)}-\boldsymbol{y}^{(i)}\|^2/2\)。然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果\(y^{(i)}=3\),那么我们只需要\(\hat{y}^{(i)}_3\)比其他两个预测值\(\hat{y}^{(i)}_1\)和\(\hat{y}^{(i)}_2\)大就行了。即使\(\hat{y}^{(i)}_3\)值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如\(\hat y^{(i)}_1=\hat y^{(i)}_2=0.2\)比\(\hat y^{(i)}_1=0, \hat y^{(i)}_2=0.4\)的损失要小很多,虽然两者都有同样正确的分类预测结果。

改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:

\[H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)},\]

其中带下标的\(y_j^{(i)}\)是向量\(\boldsymbol y^{(i)}\)中非0即1的元素,需要注意将它与样本\(i\)类别的离散数值,即不带下标的\(y^{(i)}\)区分。在上式中,我们知道向量\(\boldsymbol y^{(i)}\)中只有第\(y^{(i)}\)个元素\(y^{(i)}_{y^{(i)}}\)为1,其余全为0,于是\(H(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}) = -\log \hat y_{y^{(i)}}^{(i)}\)。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

假设训练数据集的样本数为\(n\),交叉熵损失函数定义为
\[\ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ),\]

其中\(\boldsymbol{\Theta}\)代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成\(\ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)}\)。从另一个角度来看,我们知道最小化\(\ell(\boldsymbol{\Theta})\)等价于最大化\(\exp(-n\ell(\boldsymbol{\Theta}))=\prod_{i=1}^n \hat y_{y^{(i)}}^{(i)}\),即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。

模型预测及评价

在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。如果它与真实类别(标签)一致,说明这次预测是正确的。在之后“softmax回归的从零开始实现”一节的实验中,我们将使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。

小结

  • softmax回归适用于分类问题。它使用softmax运算输出类别的概率分布。
  • softmax回归是一个单层神经网络,输出个数等于分类问题中的类别个数。
  • 交叉熵适合衡量两个概率分布的差异。

练习

  • 查阅资料,了解最大似然估计。它与最小化交叉熵损失函数有哪些异曲同工之妙?

softmax回归的从零开始实现

这一节我们来动手实现softmax回归。首先导入本节实现所需的包或模块。

%matplotlib inline
import d2lzh as d2l
from mxnet import autograd, nd

获取和读取数据

我们将使用Fashion-MNIST数据集,并设置批量大小为256。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

初始化模型参数

跟线性回归中的例子一样,我们将使用向量表示每个样本。已知每个样本输入是高和宽均为28像素的图像。模型的输入向量的长度是\(28 \times 28 = 784\):该向量的每个元素对应图像中每个像素。由于图像有10个类别,单层神经网络输出层的输出个数为10,因此softmax回归的权重和偏差参数分别为\(784 \times 10\)和\(1 \times 10\)的矩阵。

num_inputs = 784
num_outputs = 10

W = nd.random.normal(scale=0.01, shape=(num_inputs, num_outputs))
b = nd.zeros(num_outputs)

同之前一样,我们要为模型参数附上梯度。

W.attach_grad()
b.attach_grad()

实现softmax运算

在介绍如何定义softmax回归之前,我们先描述一下对如何对多维NDArray按维度操作。在下面的例子中,给定一个NDArray矩阵X。我们可以只对其中同一列(axis=0)或同一行(axis=1)的元素求和,并在结果中保留行和列这两个维度(keepdims=True)。

X = nd.array([[1, 2, 3], [4, 5, 6]])
X.sum(axis=0, keepdims=True), X.sum(axis=1, keepdims=True)
(
 [[5. 7. 9.]]
 <NDArray 1x3 @cpu(0)>, 
 [[ 6.]
  [15.]]
 <NDArray 2x1 @cpu(0)>)

下面我们就可以定义前面小节里介绍的softmax运算了。在下面的函数中,矩阵X的行数是样本数,列数是输出个数。为了表达样本预测各个输出的概率,softmax运算会先通过exp函数对每个元素做指数运算,再对exp矩阵同行元素求和,最后令矩阵每行各元素与该行元素之和相除。这样一来,最终得到的矩阵每行元素和为1且非负。因此,该矩阵每行都是合法的概率分布。softmax运算的输出矩阵中的任意一行元素代表了一个样本在各个输出类别上的预测概率。

def softmax(X):
    X_exp = X.exp()
    partition = X_exp.sum(axis=1, keepdims=True)
    return X_exp / partition  # 这里应用了广播机制

可以看到,对于随机输入,我们将每个元素变成了非负数,且每一行和为1。

X = nd.random.normal(shape=(2, 5))
X_prob = softmax(X)
X_prob, X_prob.sum(axis=1)
(
 [[0.21324193 0.33961776 0.1239742  0.27106097 0.05210521]
  [0.11462264 0.3461234  0.19401033 0.29583326 0.04941036]]
 <NDArray 2x5 @cpu(0)>, 
 [1.0000001 1.       ]
 <NDArray 2 @cpu(0)>)

定义模型

有了softmax运算,我们可以定义上节描述的softmax回归模型了。这里通过reshape函数将每张原始图像改成长度为num_inputs的向量。

def net(X):
    return softmax(nd.dot(X.reshape((-1, num_inputs)), W) + b)

定义损失函数

上一节中,我们介绍了softmax回归使用的交叉熵损失函数。为了得到标签的预测概率,我们可以使用pick函数。在下面的例子中,变量y_hat是2个样本在3个类别的预测概率,变量y是这2个样本的标签类别。通过使用pick函数,我们得到了2个样本的标签的预测概率。与“softmax回归”一节数学表述中标签类别离散值从1开始逐一递增不同,在代码中,标签类别的离散值是从0开始逐一递增的。

y_hat = nd.array([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = nd.array([0, 2], dtype='int32')
nd.pick(y_hat, y)
[0.1 0.5]
<NDArray 2 @cpu(0)>

下面实现了“softmax回归”一节中介绍的交叉熵损失函数。

def cross_entropy(y_hat, y):
    return -nd.pick(y_hat, y).log()

计算分类准确率

给定一个类别的预测概率分布y_hat,我们把预测概率最大的类别作为输出类别。如果它与真实类别y一致,说明这次预测是正确的。分类准确率即正确预测数量与总预测数量之比。

为了演示准确率的计算,下面定义准确率accuracy函数。其中y_hat.argmax(axis=1)返回矩阵y_hat每行中最大元素的索引,且返回结果与变量y形状相同。我们在“数据操作”一节介绍过,相等条件判断式(y_hat.argmax(axis=1) == y)是一个值为0(相等为假)或1(相等为真)的NDArray。由于标签类型为整数,我们先将变量y变换为浮点数再进行相等条件判断。

def accuracy(y_hat, y):
    return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar()

让我们继续使用在演示pick函数时定义的变量y_haty,并将它们分别作为预测概率分布和标签。可以看到,第一个样本预测类别为2(该行最大元素0.6在本行的索引为2),与真实标签0不一致;第二个样本预测类别为2(该行最大元素0.5在本行的索引为2),与真实标签2一致。因此,这两个样本上的分类准确率为0.5。

accuracy(y_hat, y)
0.5

类似地,我们可以评价模型net在数据集data_iter上的准确率。

# 本函数已保存在d2lzh包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中
# 描述
def evaluate_accuracy(data_iter, net):
    acc_sum, n = 0.0, 0
    for X, y in data_iter:
        y = y.astype('float32')
        acc_sum += (net(X).argmax(axis=1) == y).sum().asscalar()
        n += y.size
    return acc_sum / n

因为我们随机初始化了模型net,所以这个随机模型的准确率应该接近于类别个数10的倒数0.1。

evaluate_accuracy(test_iter, net)
0.0925

训练模型

训练softmax回归的实现跟“线性回归的从零开始实现”一节介绍的线性回归中的实现非常相似。我们同样使用小批量随机梯度下降来优化模型的损失函数。在训练模型时,迭代周期数num_epochs和学习率lr都是可以调的超参数。改变它们的值可能会得到分类更准确的模型。

num_epochs, lr = 5, 0.1

# 本函数已保存在d2lzh包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
              params=None, lr=None, trainer=None):
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
        for X, y in train_iter:
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y).sum()
            l.backward()
            if trainer is None:
                d2l.sgd(params, lr, batch_size)
            else:
                trainer.step(batch_size)  # “softmax回归的简洁实现”一节将用到
            y = y.astype('float32')
            train_l_sum += l.asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            n += y.size
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size,
          [W, b], lr)
epoch 1, loss 0.7880, train acc 0.746, test acc 0.794
epoch 2, loss 0.5739, train acc 0.810, test acc 0.827
epoch 3, loss 0.5297, train acc 0.823, test acc 0.832
epoch 4, loss 0.5046, train acc 0.830, test acc 0.838
epoch 5, loss 0.4903, train acc 0.835, test acc 0.838

预测

训练完成后,现在就可以演示如何对图像进行分类了。给定一系列图像(第三行图像输出),我们比较一下它们的真实标签(第一行文本输出)和模型预测结果(第二行文本输出)。

for X, y in test_iter:
    break

true_labels = d2l.get_fashion_mnist_labels(y.asnumpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1).asnumpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]

d2l.show_fashion_mnist(X[0:9], titles[0:9])

output_31_0

小结

  • 可以使用softmax回归做多类别分类。与训练线性回归相比,你会发现训练softmax回归的步骤和它非常相似:获取并读取数据、定义模型和损失函数并使用优化算法训练模型。事实上,绝大多数深度学习模型的训练都有着类似的步骤。

练习

  • 在本节中,我们直接按照softmax运算的数学定义来实现softmax函数。这可能会造成什么问题?(提示:试一试计算\(\exp(50)\)的大小。)
  • 本节中的cross_entropy函数是按照“softmax回归”一节中的交叉熵损失函数的数学定义实现的。这样的实现方式可能有什么问题?(提示:思考一下对数函数的定义域。)
  • 你能想到哪些办法来解决上面的两个问题?

模型选择、欠拟合和过拟合

在前几节基于Fashion-MNIST数据集的实验中,我们评价了机器学习模型在训练数据集和测试数据集上的表现。如果你改变过实验中的模型结构或者超参数,你也许发现了:当模型在训练数据集上更准确时,它在测试数据集上却不一定更准确。这是为什么呢?

训练误差和泛化误差

在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。

让我们以高考为例来直观地解释训练误差和泛化误差这两个概念。训练误差可以认为是做往年高考试题(训练题)时的错误率,泛化误差则可以通过真正参加高考(测试题)时的答题错误率来近似。假设训练题和测试题都随机采样于一个未知的依照相同考纲的巨大试题库。如果让一名未学习中学知识的小学生去答题,那么测试题和训练题的答题错误率可能很相近。但如果换成一名反复练习训练题的高三备考生答题,即使在训练题上做到了错误率为0,也不代表真实的高考成绩会如此。

在机器学习里,我们通常假设训练数据集(训练题)和测试数据集(测试题)里的每一个样本都是从同一个概率分布中相互独立地生成的。基于该独立同分布假设,给定任意一个机器学习模型(含参数),它的训练误差的期望和泛化误差都是一样的。例如,如果我们将模型参数设成随机值(小学生),那么训练误差和泛化误差会非常相近。但我们从前面几节中已经了解到,模型的参数是通过在训练数据集上训练模型而学习出的,参数的选择依据了最小化训练误差(高三备考生)。所以,训练误差的期望小于或等于泛化误差。也就是说,一般情况下,由训练数据集学到的模型参数会使模型在训练数据集上的表现优于或等于在测试数据集上的表现。由于无法从训练误差估计泛化误差,一味地降低训练误差并不意味着泛化误差一定会降低。

机器学习模型应关注降低泛化误差。

模型选择

在机器学习中,通常需要评估若干候选模型的表现并从中选择模型。这一过程称为模型选择(model selection)。可供选择的候选模型可以是有着不同超参数的同类模型。以多层感知机为例,我们可以选择隐藏层的个数,以及每个隐藏层中隐藏单元个数和激活函数。为了得到有效的模型,我们通常要在模型选择上下一番功夫。下面,我们来描述模型选择中经常使用的验证数据集(validation data set)。

验证数据集

从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。

然而在实际应用中,由于数据不容易获取,测试数据极少只使用一次就丢弃。因此,实践中验证数据集和测试数据集的界限可能比较模糊。从严格意义上讲,除非明确说明,否则本书中实验所使用的测试集应为验证集,实验报告的测试结果(如测试准确率)应为验证结果(如验证准确率)。

\(K\) 折交叉验证

由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是\(K\)折交叉验证(\(K\)-fold cross-validation)。在\(K\)折交叉验证中,我们把原始训练数据集分割成\(K\)个不重合的子数据集,然后我们做\(K\)次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他\(K-1\)个子数据集来训练模型。在这\(K\)次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这\(K\)次训练误差和验证误差分别求平均。

欠拟合和过拟合

接下来,我们将探究模型训练中经常出现的两类典型问题:一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。

模型复杂度

为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征\(x\)和对应的标量标签\(y\)组成的训练数据集,多项式函数拟合的目标是找一个\(K\)阶多项式函数

\[\hat{y} = b + \sum_{k=1}^K x^k w_k\]

来近似\(y\)。在上式中,\(w_k\)是模型的权重参数,\(b\)是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。

因为高阶多项式函数模型参数更多,模型函数的选择空间更大,所以高阶多项式函数比低阶多项式函数的复杂度更高。因此,高阶多项式函数比低阶多项式函数更容易在相同的训练数据集上得到更低的训练误差。给定训练数据集,模型复杂度和误差之间的关系通常如图3.4所示。给定训练数据集,如果模型的复杂度过低,很容易出现欠拟合;如果模型复杂度过高,很容易出现过拟合。应对欠拟合和过拟合的一个办法是针对数据集选择合适复杂度的模型。

模型复杂度对欠拟合和过拟合的影响

训练数据集大小

影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。

多项式函数拟合实验

为了理解模型复杂度和训练数据集大小对欠拟合和过拟合的影响,下面我们以多项式函数拟合为例来实验。首先导入实验需要的包或模块。

%matplotlib inline
import d2lzh as d2l
from mxnet import autograd, gluon, nd
from mxnet.gluon import data as gdata, loss as gloss, nn

生成数据集

我们将生成一个人工数据集。在训练数据集和测试数据集中,给定样本特征\(x\),我们使用如下的三阶多项式函数来生成该样本的标签:

\[y = 1.2x - 3.4x^2 + 5.6x^3 + 5 + \epsilon,\]

其中噪声项\(\epsilon\)服从均值为0、标准差为0.1的正态分布。训练数据集和测试数据集的样本数都设为100。

n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
features = nd.random.normal(shape=(n_train + n_test, 1))
poly_features = nd.concat(features, nd.power(features, 2),
                          nd.power(features, 3))
labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
          + true_w[2] * poly_features[:, 2] + true_b)
labels += nd.random.normal(scale=0.1, shape=labels.shape)

看一看生成的数据集的前两个样本。

features[:2], poly_features[:2], labels[:2]
(
 [[2.2122064]
  [0.7740038]]
 <NDArray 2x1 @cpu(0)>, 
 [[ 2.2122064   4.893857   10.826221  ]
  [ 0.7740038   0.5990819   0.46369165]]
 <NDArray 2x3 @cpu(0)>, 
 [51.674885   6.3585763]
 <NDArray 2 @cpu(0)>)

定义、训练和测试模型

我们先定义作图函数semilogy,其中\(y\)轴使用了对数尺度。

# 本函数已保存在d2lzh包中方便以后使用
def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    d2l.set_figsize(figsize)
    d2l.plt.xlabel(x_label)
    d2l.plt.ylabel(y_label)
    d2l.plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        d2l.plt.semilogy(x2_vals, y2_vals, linestyle=':')
        d2l.plt.legend(legend)

和线性回归一样,多项式函数拟合也使用平方损失函数。因为我们将尝试使用不同复杂度的模型来拟合生成的数据集,所以我们把模型定义部分放在fit_and_plot函数中。多项式函数拟合的训练和测试步骤与“softmax回归的从零开始实现”一节介绍的softmax回归中的相关步骤类似。

num_epochs, loss = 100, gloss.L2Loss()

def fit_and_plot(train_features, test_features, train_labels, test_labels):
    net = nn.Sequential()
    net.add(nn.Dense(1))
    net.initialize()
    batch_size = min(10, train_labels.shape[0])
    train_iter = gdata.DataLoader(gdata.ArrayDataset(
        train_features, train_labels), batch_size, shuffle=True)
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': 0.01})
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            with autograd.record():
                l = loss(net(X), y)
            l.backward()
            trainer.step(batch_size)
        train_ls.append(loss(net(train_features),
                             train_labels).mean().asscalar())
        test_ls.append(loss(net(test_features),
                            test_labels).mean().asscalar())
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net[0].weight.data().asnumpy(),
          '\nbias:', net[0].bias.data().asnumpy())

三阶多项式函数拟合(正常)

我们先使用与数据生成函数同阶的三阶多项式函数拟合。实验表明,这个模型的训练误差和在测试数据集的误差都较低。训练出的模型参数也接近真实值:\(w_1 = 1.2, w_2=-3.4, w_3=5.6, b = 5\)。

fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :],
             labels[:n_train], labels[n_train:])
final epoch: train loss 0.006922996 test loss 0.011304822
weight: [[ 1.3227708 -3.3637862  5.56338  ]] 
bias: [4.952137]

output_11_1

线性函数拟合(欠拟合)

我们再试试线性函数拟合。很明显,该模型的训练误差在迭代早期下降后便很难继续降低。在完成最后一次迭代周期后,训练误差依旧很高。线性模型在非线性模型(如三阶多项式函数)生成的数据集上容易欠拟合。

fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train],
             labels[n_train:])
final epoch: train loss 43.99767 test loss 160.7238
weight: [[15.56557]] 
bias: [2.282313]

output_13_1

训练样本不足(过拟合)

事实上,即便使用与数据生成模型同阶的三阶多项式函数模型,如果训练样本不足,该模型依然容易过拟合。让我们只使用两个样本来训练模型。显然,训练样本过少了,甚至少于模型参数的数量。这使模型显得过于复杂,以至于容易被训练数据中的噪声影响。在迭代过程中,尽管训练误差较低,但是测试数据集上的误差却很高。这是典型的过拟合现象。

fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2],
             labels[n_train:])
final epoch: train loss 0.4027369 test loss 103.314186
weight: [[1.3872364 1.9376589 3.5085924]] 
bias: [1.2312856]

output_15_1

我们将在接下来的两个小节继续讨论过拟合问题以及应对过拟合的方法。

小结

  • 由于无法从训练误差估计泛化误差,一味地降低训练误差并不意味着泛化误差一定会降低。机器学习模型应关注降低泛化误差。
  • 可以使用验证数据集来进行模型选择。
  • 欠拟合指模型无法得到较低的训练误差,过拟合指模型的训练误差远小于它在测试数据集上的误差。
  • 应选择复杂度合适的模型并避免使用过少的训练样本。

练习

  • 如果用一个三阶多项式模型来拟合一个线性模型生成的数据,可能会有什么问题?为什么?
  • 在本节提到的三阶多项式拟合问题里,有没有可能把100个样本的训练误差的期望降到0,为什么?(提示:考虑噪声项的存在。)